17. Divergence, Curl and Potentials

d. Differential Identities

1. First Order Differential Identities

These first order differential identities are much less important than the second order identities on the next page.

We will discuss these identities for scalar and vector fields in \(\mathbb R^3\) but they hold in any dimension unless they involve a cross product or a curl. In some of the proofs, we will only write out the \(x\)-component. The other components are analogous. Throughout these identities, \(f\) and \(g\) are scalar fields (functions), \(\vec F\) and \(\vec G\) are vector fields and \(h\) is a simple function of \(1\) variable. These first order identities generalize the product rule and the chain rule to the del operator, specifically to the gradient, divergence and curl. The only ones you need to remember are the first product rules under gradient, divergence and curl.

The Product Rule

If \(f=x^2yz^3\) and \(g=x^2y^3z^2\), compute \(\vec\nabla(fg)\) in two ways.

  1. Find \(f\vec\nabla g\) and \(g\vec\nabla f\) and add them to get \(\vec\nabla(fg)\).

    \(\begin{aligned} f\vec\nabla g &=\left\langle 2x^3y^4z^5,3x^4y^3z^5,2x^4y^4z^4\right\rangle \\ g\vec\nabla f &=\left\langle 2x^3y^4z^5,x^4y^3z^5,3x^4y^4z^4\right\rangle \\ \vec\nabla(fg) &=\left\langle 4x^3y^4z^5,4x^4y^3z^5,5x^4y^4z^4\right\rangle \end{aligned}\)

    \[\begin{aligned} f\vec\nabla g &=x^2yz^3\left\langle 2xy^3z^2,3x^2y^2z^2,2x^2y^3z\right\rangle \\ &=\left\langle 2x^3y^4z^5,3x^4y^3z^5,2x^4y^4z^4\right\rangle \\[6pt] g\vec\nabla f &=x^2y^3z^2\left\langle 2xyz^3,x^2z^3,3x^2yz^2\right\rangle \\ &=\left\langle 2x^3y^4z^5,x^4y^3z^5,3x^4y^4z^4\right\rangle \\[6pt] \vec\nabla(fg) &=f\vec\nabla g+g\vec\nabla f \\ &=\left\langle 4x^3y^4z^5,4x^4y^3z^5,5x^4y^4z^4\right\rangle \end{aligned}\]

  2. Find \(fg\) and then \(\vec\nabla(fg)\).

    \(\begin{aligned} fg&=x^4y^4z^5 \\ \vec\nabla(fg) &=\left\langle 4x^3y^4z^5,4x^4y^3z^5,5x^4y^4z^4\right\rangle \end{aligned}\)

    \[\begin{aligned} fg&=x^4y^4z^5 \\[6pt] \vec\nabla(fg) &=\left\langle 4x^3y^4z^5,4x^4y^3z^5,5x^4y^4z^4\right\rangle \end{aligned}\]

At a point \(P\), we know: \[\begin{aligned} f&=4\qquad& \vec\nabla f&=\left\langle 1,3,2\right\rangle \\ g&=5\qquad& \vec\nabla g&=\left\langle 4,2,3\right\rangle \end{aligned}\] Find \(\vec\nabla(fg)\) at \(P\).

\(\vec\nabla(fg) =\left\langle 21,23,22\right\rangle\)

Using the formula, we have: \[\begin{aligned} \vec\nabla(fg) &=f\vec\nabla g+g\vec\nabla f \\ &=4\left\langle 4,2,3\right\rangle+5\left\langle 1,3,2\right\rangle \\ &=\left\langle 16,8,12\right\rangle+\left\langle 5,15,10\right\rangle \\ &=\left\langle 21,23,22\right\rangle \end{aligned}\]

If \(f=x^2yz^3\) and \(\vec G=\left\langle x^4,y^3,z^2\right\rangle\), compute \(\vec\nabla\cdot (f\vec G)\) in two ways.

  1. Find \((\vec\nabla f)\cdot\vec G\) and \(f\vec\nabla\cdot\vec G\) and add them to get \(\vec\nabla\cdot(f\vec G)\).

    \(\begin{aligned} (\vec\nabla f)\cdot\vec G &=2x^5yz^3+x^2y^3z^3+3x^2yz^4 \\ f\vec\nabla\cdot\vec G &=4x^5yz^3+3x^2y^3z^3+2x^2yz^4 \\ \vec\nabla\cdot(f\vec G) &=6x^5yz^3+4x^2y^3z^3+5x^2yz^4 \end{aligned}\)

    \[\begin{aligned} (\vec\nabla f) &=\left\langle 2xyz^3,x^2z^3,3x^2yz^2\right\rangle \\ (\vec\nabla f)\cdot\vec G &=2x^5yz^3+x^2y^3z^3+3x^2yz^4 \\[6pt] \vec\nabla\cdot\vec G &=4x^3+3y^2+2z \\ f\vec\nabla\cdot\vec G &=4x^5yz^3+3x^2y^3z^3+2x^2yz^4 \\[6pt] \vec\nabla\cdot(f\vec G) &=(\vec\nabla f)\cdot\vec G +f\vec\nabla\cdot\vec G \\ &=6x^5yz^3+4x^2y^3z^3+5x^2yz^4 \end{aligned}\]

  2. Find \(f\vec G\) and then \(\vec\nabla\cdot(f\vec G)\).

    \(\begin{aligned} f\vec G &=\left\langle x^6yz^3,x^2y^4z^3,x^2yz^5\right\rangle \\ \vec\nabla\cdot(f\vec G) &=6x^5yz^3+4x^2y^3z^3+5x^2yz^4 \end{aligned}\)

    \[\begin{aligned} f\vec G &=x^2yz^3\left\langle x^4,y^3,z^2\right\rangle \\ &=\left\langle x^6yz^3,x^2y^4z^3,x^2yz^5\right\rangle \\[6pt] \vec\nabla\cdot(f\vec G) &=6x^5yz^3+4x^2y^3z^3+5x^2yz^4 \end{aligned}\]

At a point \(P\), we know: \[\begin{aligned} \vec F&=\left\langle 1,3,2\right\rangle\qquad& \vec\nabla\times\vec F&=\left\langle 5,1,2\right\rangle \\ \vec G&=\left\langle 2,3,1\right\rangle\qquad& \vec\nabla\times\vec G&=\left\langle 3,2,4\right\rangle \end{aligned}\] Find \(\vec\nabla\cdot(\vec F\times\vec G)\) at \(P\).

\(\vec\nabla\cdot(\vec F\times\vec G)=-2\)

Using the formula, we have: \[\begin{aligned} \vec\nabla\cdot(\vec F\times\vec G) &=\vec\nabla\times\vec F\cdot\vec G-\vec F\cdot\vec\nabla\times\vec G \\ &=\left\langle 5,1,2\right\rangle\cdot\left\langle 2,3,1\right\rangle -\left\langle 1,3,2\right\rangle\cdot\left\langle 3,2,4\right\rangle \\ &=(10+3+2)-(3+6+8)=-2 \end{aligned}\]

If \(f=x^2yz^3\) and \(\vec G=\left\langle xy,yz,zx\right\rangle\), compute \(\vec\nabla\times (f\vec G)\) in two ways.

  1. Find \((\vec\nabla f)\times\vec G\) and \(f\vec\nabla\times\vec G\) and add them to get \(\vec\nabla\times(f\vec G)\).

    \(\begin{aligned} (\vec\nabla f)\times\vec G &=\left\langle x^3z^4-3x^2y^2z^3,3x^3y^2z^2-2x^2yz^4, 2xy^2z^4-x^3yz^3\right\rangle \\ f\vec\nabla\times\vec G &=\left\langle -x^2y^2z^3,-x^2yz^4,-x^3yz^3\right\rangle \\ \vec\nabla\times(f\vec G) &=\left\langle x^3z^4-4x^2y^2z^3, 3x^3y^2z^2-3x^2yz^4, 2xy^2z^4-2x^3yz^3\right\rangle \end{aligned}\)

    \[\begin{aligned} \vec\nabla f &=\left\langle 2xyz^3,x^2z^3,3x^2yz^2\right\rangle \\[6pt] (\vec\nabla f)\times\vec G &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ 2xyz^3 & x^2z^3 & 3x^2yz^2 \\ xy & yz & zx \end{vmatrix} \\ &=\hat\imath(x^3z^4-3x^2y^2z^3)-\hat\jmath(2x^2yz^4-3x^3y^2z^2) \\ &\quad+\hat k(2xy^2z^4-x^3yz^3) \\ &=\left\langle x^3z^4-3x^2y^2z^3,3x^3y^2z^2-2x^2yz^4, 2xy^2z^4-x^3yz^3\right\rangle \\[6pt] \vec\nabla\times\vec G &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ xy & yz & zx \end{vmatrix} \\ &=\hat\imath(0-y)-\hat\jmath(z-0) +\hat k(0-x) \\ &=\left\langle -y,-z,-x\right\rangle \\[6pt] f\vec\nabla\times\vec G &=\left\langle -x^2y^2z^3,-x^2yz^4,-x^3yz^3\right\rangle \\[6pt] \vec\nabla\times(f\vec G) &=(\vec\nabla f)\times\vec G +f\vec\nabla\times\vec G \\ &=\left\langle x^3z^4-4x^2y^2z^3, 3x^3y^2z^2-3x^2yz^4, 2xy^2z^4-2x^3yz^3\right\rangle \end{aligned}\]

  2. Find \(f\vec G\) and then \(\vec\nabla\times(f\vec G)\).

    \(\begin{aligned} f\vec G &=\left\langle x^3y^2z^3,x^2y^2z^4,x^3yz^4\right\rangle \\ \vec\nabla\times(f\vec G) &=\left\langle x^3z^4-4x^2y^2z^3, 3x^3y^2z^2-3x^2yz^4, 2xy^2z^4-2x^3yz^3\right\rangle \end{aligned}\)

    \[\begin{aligned} f\vec G &=\left\langle x^3y^2z^3,x^2y^2z^4,x^3yz^4\right\rangle \\[6pt] \vec\nabla\times(f\vec G) &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ x^3y^2z^3 & x^2y^2z^4 & x^3yz^4 \end{vmatrix} \\ &=\hat\imath(x^3z^4-4x^2y^2z^3)-\hat\jmath(3x^2yz^4-3x^3y^2z^2) +\hat k(2xy^2z^4-2x^3yz^3) \\ &=\left\langle x^3z^4-4x^2y^2z^3, 3x^3y^2z^2-3x^2yz^4, 2xy^2z^4-2x^3yz^3\right\rangle \end{aligned}\]

At a point \(P\), we know: \[\begin{aligned} f&=4\qquad& \vec\nabla f&=\left\langle 1,3,2\right\rangle \\ \vec G&=\left\langle 2,3,1\right\rangle\qquad& \vec\nabla\times\vec G&=\left\langle 3,2,4\right\rangle \end{aligned}\] Find \(\vec\nabla\times(f\vec G)\) at \(P\).

\(\vec\nabla\times(f\vec G) =\left\langle 9,11,13\right\rangle\)

\[\begin{aligned} (\vec\nabla f)\times\vec G &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ 1 & 3 & 2 \\ 2 & 3 & 1 \end{vmatrix} \\ &=\hat\imath(3-6)-\hat\jmath(1-4)+\hat k(3-6) \\ &=\left\langle -3,3,-3\right\rangle \\[6pt] f\vec\nabla\times\vec G &=4\left\langle 3,2,4\right\rangle =\left\langle 12,8,16\right\rangle \\[6pt] \vec\nabla\times(f\vec G) &=(\vec\nabla f)\times\vec G +f\vec\nabla\times\vec G \\ &=\left\langle 9,11,13\right\rangle \end{aligned}\]

The Chain Rule

Compute \(\vec\nabla(\sin(x^2yz^3))\) in two ways.

  1. Let \(u=\sin(w)\) and \(f=x^2yz^3\). Find \(u'(f)\), \(\vec\nabla f\) and \(u'(f)\vec\nabla f\).

    \(u'(f)\vec\nabla f =\left\langle \cos(x^2yz^3)2xyz^3,\cos(x^2yz^3)x^2z^3, \cos(x^2yz^3)3x^2yz^2\right\rangle\)

    If \(u=\sin(w)\) and \(f=x^2yz^3\), then \(u'=\cos(w)\) and \(u'(f)=\cos(x^2yz^3)\). Further, \(\vec\nabla f=\left\langle 2xyz^3,x^2z^3,3x^2yz^2\right\rangle\). So \[ u'(f)\vec\nabla f =\left\langle \cos(x^2yz^3)2xyz^3,\cos(x^2yz^3)x^2z^3, \cos(x^2yz^3)3x^2yz^2\right\rangle \]

  2. Compute \(\vec\nabla(\sin(x^2yz^3))\) by taking the \(x\), \(y\) and \(z\) derivatives of \(\sin(x^2yz^3)\).

    \(\vec\nabla \sin(x^2yz^3) =\left\langle \cos(x^2yz^3)2xyz^3,\cos(x^2yz^3)x^2z^3, \cos(x^2yz^3)3x^2yz^2\right\rangle\)

    We compute the partial derivatives of \(\sin(x^2yz^3)\): \[\begin{aligned} \partial_x\sin(x^2yz^3) &=\cos(x^2yz^3)2xyz^3 \\ \partial_y\sin(x^2yz^3) &=\cos(x^2yz^3)x^2z^3 \\ \partial_z\sin(x^2yz^3) &=\cos(x^2yz^3)3x^2yz^2 \\ \end{aligned}\] So \[ \vec\nabla \sin(x^2yz^3) =\left\langle \cos(x^2yz^3)2xyz^3,\cos(x^2yz^3)x^2z^3, \cos(x^2yz^3)3x^2yz^2\right\rangle \]

© MYMathApps

Supported in part by NSF Grant #1123255